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STABILITY OF A PLASTIC CYLINDRICAL BAR IN TORSION

UDC 539.3:517.946V. V. Struzhanov and S. V. Zhizherin

The stability of a cylindrical bar twisted by soft and hard loading schemes is studied. The material
is deformed plastically without continual failure. It is assumed that the material becomes physically
unstable after hardening (softening stage). Two new criteria are used to determine the instability
moment and strain localization.

Introduction. The instability and strain localization constrain the deformation of a solid body and lead to
its failure. These complex phenomena are not clearly understood.

As a rule, physical instability of a material is ignored in studying instability of solids [1, 2]. Physical instability
is usually taken into account by considering the necessary conditions of strain localization for the uniform stress–
strain state regardless of the body geometry, loading conditions, and the deformation region of the material in the
stages of elastic deformation, hardening, and softening (physical instability) [3].

In the present study, the stability problem of a twisted cylindrical bar is considered with allowance for all
factors affecting stability and strain localization (length and radius of the cylinder, loading conditions, physical
instability of the material, and stress–strain state) under the assumption of ideal plastic properties of the material,
i.e., the damage (continual failure) is ignored. Two criteria are proposed to determine the instability moment and
strain localization.

1. Properties of the Material. We consider a twisted bar of length l and cross-sectional radius R.
The deformation is caused by the torque M (soft loading) or the twist angle ψ (hard loading). We assume that
the properties of the material are characterized by a strain diagram in the coordinates τ (shear stress) and γ

(shear strain), which consists of ascending and descending branches [4]. The elastic behavior of the material is
characterized by the shear modulus G; material hardening (ascending branch γyield < γ 6 γt) following the linear
sector of elasticity and softening (descending branch γt < γ 6 γz) are characterized by the tangent (instantaneous)
shear modulus Gp = dτ/dγ. Here γyield, γt, and γz are the shear strains corresponding to the yield point τyield,
ultimate strength τ t, and failure, respectively.

Depending on the processes occurring in the material upon deformation, the following three variants of
unloading are possible: 1) no residual strains occur, and unloading is characterized by the secant modulus Gs = τ/γ;
2) residual strains occur, and the unloading modulus is equal to G; 3) residual strains occur, and the unloading
modulus is equal to Gu (Gs < Gu < G).

A decrease in the unloading modulus is due to the continual failure, i.e., the microdefect damage of the
material. Ignoring this phenomenon, we obtain the model of a plastic material capable of both hardening and
softening. In this case, the stress–strain relation can be written in the form [4]

τ = Gγe = G(γ − γp), (1.1)

where γe and γp are the elastic and plastic shear strains, respectively.
Using (1.1), we obtain dτ = G(dγ − dγp). At the same time, the incremental relation dτ = Gpdγ is valid.

Equating these expressions, we obtain

dγp = (1−Gp/G) dγ. (1.2)

Equation (1.2) determines the kinetics of the development of plastic strain in the absence of damages.
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2. Basic and Correcting Problems. We split the initial problem of determining the stress–strain state
of the bar loaded by a given torque into basic and correcting problems [4]. The basic problem is the problem of
torsion of the elastic bar by a specified torque. Its solution is given by

γ′ = αMr, τ ′ = GαMr, ψ′ = αMl, α = (0.5πGR4)−1,

where ψ′ is the twist angle produced by the torque M . The correcting problem is the problem of determining the
residual stresses in the bar for a given residual plastic strain γp and free boundary. Its solution has the form

η = αmr, τ ′′ = G(η − γp), ψ′′ = αml, m = 2π

R∫
0

Gγpr2 dr,

where ψ′′ is the twist angle of the bar with stress-free ends, m is the fictitious torque, η is the shear strain that
satisfies the compatibility conditions, and τ ′′ are the residual stresses.

We introduce the operator P1 determined by the relation

P1e(r) =
4r
R4

R∫
0

e(r)r2 dr,

which transforms arbitrary functions e(r) into linear functions. One can see that η = P1Gγ
p/G and τ ′′ = P1Gγ

p−
Gγp. Hence, the operator P1 determines actually the solution of the correcting problem.

For hard loading, the solution of the basic problem has the form

γ′ = ψr/l, τ ′ = Gψr/l, M ′ = 2πGψR4/(4l),

where M ′ is the torque producing the twist angle ψ. In this case, the correcting problem is to determine the residual
stresses in the bar with fixed ends. Its solution is given by

η = 0, τ ′′ = −Gγp, m′ = −m,

where m′ is the torque that holds the bar ends. Obviously, the operator Q1 determining the solution of the correcting
problem is zero and τ ′′ = Q1Gγ

p −Gγp = −Gγp.
For both soft and hard loadings, the solution of the initial problem for a given γp is a sum of the solutions

of the basic and correcting problems.
3. St-Criterion for Soft Loading. We give a definition of the stability of equilibrium of the bar in the

Lyapunov sense, which is similar to that given in [5].
Definition 1. For soft loading, the state of equilibrium of the bar is stable if, for any δ > 0, there exist

parameters ε1 > 0 and ε2 > 0 such that, as the torque is increased by a small quantity dM , the inequality dM < δ

yields the inequalities |dγ| < ε1 and |dγp| < ε2 for each r, where dγ and dγp are related to one another by (1.2)
and to dM by conditions of equilibrium.

This definition implies that, if the state of equilibrium is disturbed by increasing the torque by dM , the
functions dγ and dγp must satisfy the initial problem for dτ = G(dγ − dγp) and the boundary conditions for dM .

The solutions of the basic and correcting problems yield

dγ = dγ′ + dη = αr dM +G−1P1Gdγ
p.

Substituting the expression for dγp (1.2) into this relation, after simple manipulations, we obtain

St dγ = Gαr dM, (3.1)

where

St = G− P1G+ P1G
p. (3.2)

Hence, dγ = S−1
t Gαr dM . It follows from Definition 1 that the stability of the bar is determined by the properties

of the operator St, which we call the stability operator. If this operator is reversible, the solution of Eq. (3.1) is
unique and the state of equilibrium is stable. If S−1

t =∞ and, hence,

St = 0, (3.3)

the state of equilibrium is unstable.
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If the operator P1 is reversible, we apply the operator P−1
1 to equality (3.3) with allowance for (3.2) and

infer that the instability criterion (3.3) holds provided the distribution of the tangent shear modulus over the cross
section of the bar is given by

Gp = G− P−1
1 G. (3.4)

We assume that strain localization does not occur upon the deformation of the bar, i.e., dγ = (r/l) dψ in
each cross section. Using equality (3.2), we obtain

St dγ =
dψ

l

4r
R4

R∫
0

Gp(r)r3 dr.

It follows that condition (3.3) holds if
R∫

0

Gpr3 dr = 0. (3.5)

In this case, a small increase in the torque leads to an unlimited increase in the twist angle.
It is noteworthy that the instability criterion (3.5) coincides with the condition established in [4] under which

the iterative process of determining the stress–strain state of the softly loaded bar diverges.
We consider an example. Let the zones of elasticity Ve (0 6 r 6 Ryield), hardening Vh (Ryield < r 6 Rt),

and softening Vs (Rt < r 6 R) occur in the cross section of the bar for a certain state of equilibrium. We assume
that the tangent moduli Gp

h and Gp
s that refer to the hardening and softening stages, respectively, are constant. We

find the value of Gp
s for which the state of equilibrium is unstable. From condition (3.5), we obtain

Ryield∫
0

Gr3 dr +

Rt∫
Ryield

Gp
hr

3 dr +

R∫
Rt

Gp
sr

3 dr = 0.

Hence,

Gp
s = −

GR4
yield +Gp

h(R4
t −R4

yield)
R4 −R4

t

. (3.6)

Here Ryield and Rt are the radii of circles enclosing the elastic and hardening regions, respectively.
We consider an approach based on formula (3.4). It follows from (3.1) that the range of definition and the

range of values of the operator St are determined by a set Y of linear functions of the form βr (β = 0,∞). We
write the operator P1 in the form of the sum P1 = P1χe + P1χh + P1χs = P1e + P1h + P1s. Here

χe =
{

1, r ∈ Ve,

0, r 6∈ Ve,
χh =

{
1, r ∈ Vh,
0, r 6∈ Vh,

χs =
{

1, r ∈ Vs,
0, r 6∈ Vs.

Thus, the domains of definition of these operators are the sets χeY, χhY, and χsY, respectively, and the domain of
values is the set Y . Then, we have

St = G− (P1e + P1h + P1s)G+ (P1e + P1h + P1s)Gp. (3.7)

Here P1e = R4
yield/R

4, P1h = (R4
t −R4

yield)/R4, and P1s = (R4 −R4
t )/R4, and the corresponding inverse operators

have the form P−1
1e = χeR

4/R4
yield, P−1

1h = χhR
4/(R4

t − R4
yield), and P−1

1s = χsR
4/(R4 − R4

t ). To determine the
modulus Gp

s for which the instability occurs, we equate expression (3.7) to zero and use the operator P−1
1s . After

some manipulations with allowance for the formulas χeG
p = G, χhGp = Gp

h, and χsG
p = Gp

s , we obtain the value
of Gp

s given by formula (3.6).
We now infer whether strain localization is possible in a certain volume of the bar Va shaped as a cylinder of

height a (0 < a < l). We specify the plastic strains dγp
a(r) in the volume Va and find the solution of the correcting

problem. It is given by the equality

dη =
{
αmar in Va,

0 in Vb.

Here Vb is the cylinder of height l − a and ma = 2π

R∫
0

Gdγp
ar

2 dr. Then, we obtain
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P1Gdγ
p
a = P1aGdγ

p
a =


4r
R4

R∫
0

Gdγp
ar

2 dr in Va,

0 in Vb.

In this case, the stability operator is given by

St dγa = Gdγa − P1aGdγa + P1aG
p
a dγa =

dψa
a

4r
R4

R∫
0

Gp
ar

3 dr.

Here ψa is the twist angle of the cylinder Va, dγa = (dψa/a)r, and Gp
a(r) is the distribution of the tangent shear

modulus over the cross sections of the cylinder Va. The instability criterion (3.3) is satisfied if

R∫
0

Gp
ar

3 dr = 0.

Under this condition, the twist angle of the cylinder Va increases unlimitedly. Consequently, the strain is localized
in this volume. A comparison with condition (3.5) shows that the instability of the bar is accompanied by strain
localization in a certain volume.

4. St-Criterion for Hard Loading. We give a definition of the stability of the state of equilibrium of the
bar.

Definition 2. For hard loading, the state of equilibrium of the bar is stable if, for any δ > 0, there exist
parameters ε1 > 0 and ε2 > 0 such that, as the twist angle increases by a small quantity dψ, the inequality dψ < δ

yields the inequalities |dγ| < ε1 and |dγp| < ε2 for each r, where dγ and dγp are related to one another by relation
(1.2) and to dψ by conditions of equilibrium.

Let the twist angle increase by dψ. Using the solution of the basic and correcting problems, we infer that

dγ = dγ′ + dη = (dψ/l)r +G−1Q1Gdγ
p (4.1)

in a state of equilibrium. As expressions (3.1) and (3.2), this equality can be written in the form St dγ = (dψ/l)Gr,
where St = G−Q1G+Q1G

p. Then, dγ = S−1
t (dψ/l)Gr. It follows from Definition 2 that the state of equilibrium

becomes unstable if S−1
t = ∞ (St = 0). As in the case of (3.4), we find that the equality Gp = G − Q−1

1 G must
hold at the moment of instability. In the absence of strain localization, we have Q−1

1 =∞ (Q1 = 0). Consequently,
the instability occurs if Gp = −∞.

We determine conditions under which strain localization occurs in a certain volume Va. We specify the
plastic strains dγp

a(r) in this volume and solve the correcting problem. We obtain

dη =
{

(1− a/l)αmar in Va,

−(a/l)αmar in Vb.

Then, we have

Q1Gdγ
p
a = Q1aGdγ

p
a =

{
(1− a/l)Gαmar in Va,

−(a/l)Gαmar in Vb.

We write equality (4.1) for the region Va. With allowance for relation (1.2), we obtain

dγa −
(

1− a

l

) 4r
GR4

R∫
0

(G−Gp
a)dγar2 dr =

r dψ

l
.

Substituting dγa = (dψa/a)r into this expression, after simple rearrangement, we find[
a

l
+
(

1− a

l

) 4
R4G

R∫
0

Gp
ar

3 dr

]
dψa
a

=
dψ

l
. (4.2)

It follows that the stability operator in the region Va has the form

St =
a

l
+
(

1− a

l

) 4
R4G

R∫
0

Gp
ar

3 dr.

Hence, St = 0 if
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R∫
0

Gp
ar

3 dr = − GR4a

4(l − a)
. (4.3)

If equality (4.3) is satisfied, the twist angle of the cylinder Va increases unlimitedly, i.e., the strain is localized
in the region Va. Since the twist angle of the bar is fixed, the twist angle of the cylinder Vb tends to zero, and the
cylinder Vb is unloaded.

Obviously, strain localization is accompanied by the loss of stability of the entire bar.
It should be noted that equality (4.3) yields Gp = −∞ for l = a (localization is absent). If l� a, the loading

scheme (soft or hard) weakly affects the stability of the twisted bar. Moreover, for a = 0, condition (4.3) coincides
with the condition of strain localization under soft loading. Since the integral on the left side of formula (4.3)
vanishes at the same moment for both schemes of loading, it follows that the instability of the twisted bar made of
a plastic material is always related to strain localization in a narrow band of a nearly zero width.

5. R-Criterion for Soft Loading. We first consider a material element of unit volume in pure shear and
introduce the functional ρ = dγ Gdγ− dγpGdγp, where dγp is the plastic-strain increment that corresponds to the
increment in the total shear strain dγ. Using the obvious equalities dγ = dγe + dγp and dτ = Gdγe, where dγe is
the increment in the elastic shear strain, we obtain the relation dτ dγ + dτ dγp = dγ Gdγ − dγpGdγ + dγ Gdγp −
dγpGdγp = dγ Gdγ − dγpGdγp = ρ. The criterion of physical stability proposed by Drucker [6] implies that the
inequalities ρ > 0 and ρ < 0 are satisfied for stable (dτ dγ > 0 and dτ dγp > 0) and unstable states, respectively.

If ρ > 0, then dτ(dγ+ dγp) = dτ(2dγ− dγe) = 2dτ dγ− dγeGdγe > 0. Since dγeGdγe > 0, then dτ dγ > 0.
If ρ < 0, then dτ(dγ + dγp) = dτ(dγe + 2dγp) = dγeGdγe + 2dτ dγp < 0. Hence, dτ dγp < 0.

Thus, the sign of the functional ρ (as well as the Drucker’s postulate) determines the physical stability of the
material. It is noteworthy that the inequality ρ > 0 corresponds to deformation for which the potential elastic-strain
energy increases, and the inequality ρ < 0 corresponds to deformation for which this energy decreases in this unit
volume.

A physically unstable state of the material does not necessarily lead to the loss of stability of the state of
equilibrium.

Definition 3. For pure shear, the state of equilibrium of a unit volume is stable if, for any δ > 0 there
exists a parameter ε > 0 such that the inequality dγ Gdγ < δ yields dγpGdγp < ε, where dγ and dγp are related
by (1.2).

Consequently, the instability occurs when an infinitesimal increment in the total strain leads to finite or
infinite plastic strains, i.e., dγpGdγp/(dγ Gdγ) = ∞ or ρ = −∞. Thus, for a unit volume in which the strain
produced by hard loading is uniform, this condition holds for Gp = −∞. In this case, a so-called unavoidable
physical instability occurs in the material.

Disturbing the equilibrium of the bar by increasing the torque by a small quantity dM and summing the
functionals ρ over the volume, we obtain

R =
∫
V

ρ dV = 2πl

R∫
0

ρr dr. (5.1)

To analyze the stability of the state of equilibrium, we express the quantity dγp in the R-integral (5.1) in
terms of dγ with the use of equality (1.2) and determine the shear-strain increment dγ by the equation of equilibrium

dM = 2π

R∫
0

dτ r2 dr = 2π

R∫
0

Gp dγ r2dr.

With allowance for the equality dγ = (dψ/l)r, we obtain

R = l(dM)2

R∫
0

[2GGp − (Gp)2]r3 dr
/

2πG

( R∫
0

Gpr3 dr

)2

. (5.2)

Drawing the analogy to deformation of a unit volume, we assert that the elastic-strain energy of the bar increases for
R > 0 and decreases for R < 0. The inequality R < 0 is the necessary condition of the loss of stability, which occurs
for R = −∞. It follows, with allowance for (5.2), that equality (3.5) also determines the moment of instability in
this case.
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We consider the possibility of strain localization in a certain volume Va. We write the R-integral in the form

R = 2πa

R∫
0

ρar dr + 2π(l − a)

R∫
0

ρbr dr, (5.3)

where ρa = dγaGdγa − dγp
a Gdγ

p
a and the functional ρb = dγbGdγb − dγp

b Gdγ
p
b is defined in the region Vb. By

virtue of equalities (1.2) and dγa = (dψa/a)r and the equation of equilibrium dM = 2π

R∫
0

Gp
a dγar

2 dr, the first

integral in (5.3) is reduced to a form similar to (5.2), where Gp is replaced by Gp
a. Then, R = −∞ for

R∫
0

Gp
ar

3 dr = 0.

In this case, the loss of stability of the bar is accompanied by strain localization in the volume Va. It should be
noted that this condition coincides with that obtained above.

6. R-Criterion for Hard Loading. Let the state of equilibrium of the bar be disturbed by increasing
the twist angle by dψ. Using equality (1.2) and equations of equilibrium and expressing all the quantities in terms
of dψ, we write the R-integral (5.1) in the form

R =
2πdψ2

Gl

R∫
0

[2GGp − (Gp)2]r3 dr.

The loss of stability of the bar occurs for R = −∞. In the absence of localization, this condition holds for Gp = −∞.
To infer whether strain localization is possible in the region Va, we write expression (5.3) in the form

R =
2πdψ2

a

Ga

R∫
0

[2GGp
a − (Gp

a)2]r3 dr + 2π(l − a)

R∫
0

ρbr dr.

By virtue of conditions of equilibrium, the quantity dψa should be expressed in terms of dψ with the use of
formula (4.2). As a result, we find that R = −∞ if equality (4.3) is satisfied. Again, we arrive at the result obtained
above with the use of the St-criterion.
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